
*

Mount Washington Highest FM Station

With tremendous winds sweeping its 100-foot tower and buildings Station W39B, located on the 6,288-foot mountain has a radius of 100 miles and reaches a potential "FM" audience of 2,000,000 people.

A. F. SISE Member, Engineering Staff, Yankee Network

Left: Ice-covered mast of the Yankee Network's FM Station W398, Mt. Washington. Tons of these ice feathers are continually forming on all exposed surfaces. Right: Another view of the antenna of W398, Mt. Washington, showing peculiar auto-spring construction of antenna arms. They are constructed to stand the weights of tons of ice.

BACK in the fall of 1932, a little group of people gathered together around the old wood stove in the AMC Hut nestled in Pinkham Notch at the base of Mt. Washington, most lofty peak in New Hampshire's White Mountains. I was one of these five men, who were sitting in this isolated log cahin, listening to Joseph B. Dodge, Chief Hut-Master of the AMC (sometimes called The Old Man of the Mountains) tell of his idea of organizing a weather observatory to record the extremes of weather on the highest point of land in the Northeastern United States. We were all familiar enough with Mt. Washington to realize that even on a relatively good day in the valley below, the fiercest of storms might rage on the Mountain Slopes.

Accordingly, in October 1932, the Mt. Washington Observatory was born, under the leadership of Joe Dodge and with the active cooperation of Dr. C. F. Brooks of Harvard's Blue Hill Observatory, Mr. Henry Shaw of Exeter, Dr. G. W. Pickard of Seabrook Beach, and the N. H. Academy of Science. The old stage office building belonging to the Mt. Washington Summit Road Company was made over into suitable quarters for the Observatory. This building was anchored to the ground by means of chains to hold it against the tremendous

winds encountered. We all remember our first real storm of super-hurricane proportions and how the building swayed and tugged at the chains that held it captive.

After two months on Mt. Washington, I left this environment to go to Harvard's Blue Hill Observatory under Dr. C. F. Brooks, head of the Meteorological Department at Harvard and Dr. Pickard, to attempt to communicate with the Mt. Washington Observatory using the hitherto unexplored ultra high frequencies or very short radio wave-lengths. These waves were not supposed to travel beyond the horizon and one certainly cannot see Mt. Washington from the Summit of Blue Hill in Milton, Massachusetts. Imagine our surprise, when with a very rudimentary radio transmitter we were able to successfully communicate with Mt. Washington. Immediately improvements were made in the equipment used, and a permanent radio transmitter utilizing these very short waves was set up at Blue Hill. A third station was built in Dr. Pickard's residence at Seabrook Beach, N. H., another at the residence of Mr. Henry Shaw at Exeter, N. H. Immediately followed a series of experiments by this group of men, mostly in their spare time, as a hobby that was destined to play its own small part in introducing a fundamental change in the whole industry

of broadcasting. Everyone was surprised at the good reception obtained and the ease of communication. Signals from these transmitters did not fade out at the optical horizon, as was expected, but went much farther beyond.

Encouraged by this fact and foreseeing the great possibilities that lay ahead, Dr. Pickard suggested putting a small radio transmitter, utilizing these very short waves, in an automobile. This was done and many months were spent driving this car about Southern New Hampshire, Maine and Northern Massachusetts, talking most of the time that it was in motion, with Dr. Pickard, Mr. Shaw, The Mt. Washington Observatory and others. During this period Dr. Pickard displayed the most remarkable enthusiasm, which was quite contagious. His was the most inspiring sort of leadership. Night after night he would work with us until nearly sunrise, his enthusiasm, determination, always driving us on. His droll wit relieved the most trying moments. Many a night was spent on hill tops, talking with stations in the valley below.

It was during one of these trips that Mr. Paul de Mars, then Technical Director of the Yankee Network, spent a considerable period of time talking with the mobile car. Mr. de Mars was troubled with the problem of providing a better broadcasting service to the people of New England. Coupling a keen imagination with a gift for being able to foresee developments in the broadcasting industry long before many of its leaders, Mr. de Mars saw in these simple experiments the possibility of an answer to his problem. Accordingly, this work was carried on for some time by the Yankee Network under the direction of Mr. de Mars and Dr. Pickard.

A small radio transmitter using these very short waves was placed in a boat. This boat communicated with Dr. Pickard at his home, down by the waters' edge at Seabrook Beach, N. H. It then put out to sea sending out a radio signal that was recorded by Dr. Pickard. Over sea water it was easy to tell when the optical horizon was reached. There was no sudden change in the signal received after this point had been passed. In fact, the boat went many miles beyond this optical horizon and still maintained excellent communication with the shore station.

Encouraged by this experiment and foreseeing the great possibilities that might lie ahead, the Yankee Network installed a broadcasting transmitter utilizing these very short waves. This transmitter was located in the same building with WNAC and WAAB, Yankee owned stations at Squantum, Massachusetts. The transmitter was in operation for a period of years. During this time Yankee Engineers listened to these programs on receivers installed in their homes and in especially made sets installed in their cars. They finally came to the conclusion that utilization of these very short waves could never in itself solve the problems troubling the broadcasters. They solved some of these problems, did some wonderful things that they weren't supposed to do, but nevertheless, the utilization of these waves under the existing method of broadcasting could never provide a better type of radio service to the public.

FM ATTRACTS OUR ATTENTION

Then, along came "Major", as he is endearingly called by his friends. Just at the time when it seemed as though these years of experimenting might be of no avail, or at least no use to us, Major Edwin H. Armstrong of Columbia University began to demonstrate to the radio art his new invention called "Frequency Modulation",

In 1935, Major Armstrong first presented a paper before the Institute of Radio Engineers describing his new miracle. The results he claimed from this new and fundamentally different type of transmission and reception seemed utterly impossible, fantastic. Imagine listening to a radio station seventy miles away, during a thunderstorm and enjoying crystal clear reception of the program. And doing all this on these very short waves where there was plenty of room for an almost unlimited number of stations. Well, it just seemed too

good to be true.

Early in 1936 a group of three Yankee Engineers, Mr. de Mars, Mr. Irving Robinson, Chief Engineer, and myself, took a trip to New York City in order to see and hear for ourselves this remarkable new in-vention. This was indeed a dramatic occasion. Armstrong was the genius who had first invented the regenerative circuit during the early days of radio. With these thoughts in mind it was a most exciting and dramatic occasion when we were ushered by the Major into a small room with a perfectly normal, although large looking radio receiver in front of us. After a few words of explanation the receiver was turned on. Lo and behold utter silence! A most impressive absence of any sound. One could hear a pin drop. We thought the set had broken down, were about to say something, when startled by a strange voice in the room with us. It took some seconds to realize that this was FM in operation. The voice was not in the room with us, but was one of the Major's associates, Mr. C. R. Runyon, up in Yonkers, saying hello to us over the air. A few musical selections followed which were of truly unbelievable clarity, but they were unimportant. We were still recovering from our surprise at that initial silence and that first hello from the little man who wasn't there.

It did not take Mr. de Mars long to sell John Shepard 3rd, President of the Yankee Network, the idea that here was the answer to many of radio's most baffling problems. Here was the only manner by which a real improved radio service could be provided for the public. Therefore, in the spring of 1937, the Yankee Network embarked upon a program designed to provide this new FM Service to practically all of the rural sections of New England, as well as the more thickly populated urban centers. Our modest experiments of 1932-1933 suddenly

took on a big league aspect.

This brings us right back to where we started, Mt. Washington. With height being a dominant factor in this new system of broadcasting, it was only natural that we

should consider Mt. Washington.

It was estimated at the outset that some 2,000,000 people could be provided with a truly perfect interference-free radio service from this location. Most of these people could never have been provided with a really satisfactory radio service in any other manner as this is mostly a rural population spread over a large area. Certainly one of the most difficult problems we had to over-

come in order to build a station on this exposed peak, 6,288 ft. above sea level, was the weather. Mt. Washington has the most severe climatic conditions of any mountain, regardless of altitude, that has been visited by humans often enough to provide any sort of weather records. Mt. Washington has more severe weather than mountains in Arctic, Spitzbergen, other higher mountains in the Alps, or even Admiral Byrd's Lit-

tle America in the Antarctic. The world's maximum wind velocity was recorded on Mt. Washington during April 1934, officially clocked by the Observatory at 231 miles per hour. We have seen ice and rime formations build out from exposed objects to a length of eight feet or more, giving all structures on the summit a most weird

appearance.

It was at this bleak and inhospitable Arctic outpost that the Yankee Network dared to spend \$35,000 in 1937, in the belief that FM held the key to the future of radio broadcasting. An FM station was not built immediately, but during the summer and fall of 1937 the experimental broadcasting station at Squantum, which operated on the same short waves that FM would use, was moved to the summit of Mt. Washington. Space was rented in the Mt. Washington Observatory's brand new building in order to house this transmitter and its operators. Land was leased from the Mt. Washington Railway Company who own the summit of the Mountain, and the erection of an antenna tower was commenced. This tower was to be 100 ft. high and had to be especially designed and braced to withstand the super-tornado winds.

And so, radio Station W1XER went on the air during the fall of 1937, with 500 watts power and a temporary antenna. This station was used during the winter of 1937-'38, and the early part of 1939, to transmit weather reports from the Summit of Mt. Washington to the Yankee Network Studios in Boston, Massachusetts. It also |